Analyse 1 (An1)

Kursusindhold

  1. Talfølger og talrækker.
  2. Funktionsfølger og funktionsrækker.
  3. Punktvis og uniform konvergens.
  4. Potensrækker.
  5. Fourierrækker.
  6. Introduktion til metriske rum.
Engelsk titel

Analysis 1 (An1)

Uddannelse

Bacheloruddannelsen i forsikringsmatematik
Bacheloruddannelsen i fysik
Bacheloruddannelsen i matematik
Bacheloruddannelsen i matematik-økonomi

Målbeskrivelse

Viden:

  • Konvergenskriterier for talfølger og talrækker
  • De vigtigste egenskaber ved funktionsrækker, herunder potensrækker og Fourierrækker
  • Definitioner og sætninger vedrørende generelle metriske rum
  • Konkrete eksempler på metriske rum
  • Anvendelser af potens- og fourierrækker
     

 

Færdigheder:

  • Anvende de gængse konvergenskriterier til at analysere konvergensforhold for talfølger og talrækker i konkrete tilfælde.
  • Argumentere for punktvis/uniform konvergens/divergens af funktionsfølger og -rækker i konkrete tilfælde, herunder kunne bruge majorantkriteriet.
  • Afgøre om ombytning af summation og integration/differentiation er tilladt for konkrete funktionsrækker.
  • Redegøre for konvergensforholdene for potensrækker generelt og at foretage konkrete analyser, herunder bruge de gængse metoder til bestemmelse af konvergensradius.
  • Gennemføre argumentation/manipulation ved brug af ledvis integration og differentiation af potensrækker.
  • Kende Taylorrækkerne for de klassiske funktioner.
  • Bestemme Taylor- og Fourierrækker for en givne funktion, både med og uden elektroniske hjælpemidler.
  • Redegøre for konvergensforholdene for Fourierrækker hvad angår både punktvis og uniform konvergens.
  • Redegøre for, hvad et metrisk rum er, samt kende standardeksempler på sådanne (ud over talrummene).
  • Give forskellige karakteriseringer af kontinuitet/uniform kontinuitet for generelle afbildninger, herunder også \epsilon-\delta definitionen, samt anvende disse til at vise kontinuitet i konkrete situationer.
  • Formulere definitionerne af fuldstændighed og af kompakthed for metriske rum og kende standardeksempler på sådanne.
  • Anvende hovedsætninger vedrørende kontinuerte afbildninger på kompakte metriske rum i argumentationssammenhæng.
     

 

Kompetencer:

  • Analysere konvergensforhold for uendelige rækker af tal og funktioner og andre grænseprocesser for funktioner.
  • Mestre de elementære egenskaber vedrørende potensrækker og Fourierrækker.
  • Håndtere abstrakte strukturer (metriske rum) inden for analyse.

5 timers forelæsning og 5 timers øvelser per uge i 8 uger. Aktiviteter forhindret af helligdage indhentes i uge 9 af blokken.

Notemateriale udarbejdes. En af lærebøgerne fra MatIntro kan inddrages.

Analyse 0 eller tilsvarende forudsætninger.

Skriftlig
Mundtlig
Individuel
Kollektiv
Løbende feedback i undervisningsforløbet

Der gives skriftlig feedback på 4 ugentlige afleveringsopgaver, der tæller mod karakter som beskrevet under beskrivelse af eksamen.

Ved de teoretiske øvelser præsenterer de studerende herudover besvarelser af opgaver udarbejdet individuelt eller i grupper, og modtager mundtlig feedback herpå fra en studenterinstruktor.

ECTS
7,5 ECTS
Prøveform
Løbende bedømmelse
Prøveformsdetaljer
a) Fire skriftlige opgavesæt afleveres individuelt i kursets løb og pointsættes. Den dårligst bedømte opgave udgår og gennemsnit beregnes for de tre bedst bedømte opgavesæt.

b) To 75-minutters lynprøver stilles og løses individuelt ved to udvalgte øvelsesgange, med alle skriftlige hjælpemidler tilladt. Studerende kan også vælge at deltage i en 150-minutters slutprøve ved kursets afslutning. Besvarelserne ved alle disse prøver indskrives på dertil udleverede svarark.

Deltager man i slutprøven, annulleres resultaterne fra de to lynprøver.

Karakteren fastsættes ud fra et procenttal opnået 50% fra a) [gennemsnittet af de tre bedste opgavesæt] og 50% fra b) [gennemsnittet af lynprøverne eller resultatet af slutprøven].
Hjælpemidler
Kun visse hjælpemidler tilladt (se beskrivelse nedenfor)

Ved de skriftlige aflevering a) er alle hjælpemidler tilladt. 
Ved lynprøverne og slutprøven b) er skriftlige hjælpemidler tilladt. Elektroniske hjælpemidler er IKKE tilladt. 

Bedømmelsesform
7-trins skala
Censurform
Ingen ekstern censur
Én intern bedømmer
Reeksamen

4 timers skriftlig eksamen med alle hjælpemidler tilladt, hvis karakter tæller 100%. 

Kriterier for bedømmelse

Den studerende skal på tilfredsstillende måde godtgøre, at vedkommende lever op til fagets målbeskrivelse.

Enkeltfag dagtimer (tompladsordning)

  • Kategori
  • Timer
  • Forelæsninger
  • 40
  • Forberedelse (anslået)
  • 126
  • Teoretiske øvelser
  • 40
  • Total
  • 206

Kursusinformation

Undervisningssprog
Dansk
Kursusnummer
NMAA04016U
ECTS
7,5 ECTS
Niveau
Bachelor
Varighed

1 blok

Placering
Blok 4
Skemagruppe
A (tirs 8-12 + tors 8-17)
Kapacitet
Ingen begrænsning – medmindre du tilmelder dig i eftertilmeldingsperioden (BA og KA) eller som merit- eller enkeltfagsstuderende.
Studienævn
Studienævn for Matematik og Datalogi
Udbydende institut
  • Institut for Matematiske Fag
Udbydende fakultet
  • Det Natur- og Biovidenskabelige Fakultet
Kursusansvarlig
  • Søren Fournais   (8-6b747a7773666e78457266796d33707a336970)
Gemt den 24-02-2025

Er du BA- eller KA-studerende?

Er du bachelor- eller kandidat-studerende, så find dette kursus i kursusbasen for studerende:

Kursusinformation for indskrevne studerende