Analyse 1 (An1)

Kursusindhold

  1. Talfølger og talrækker.
  2. Funktionsfølger og funktionsrækker.
  3. Punktvis og uniform konvergens.
  4. Potensrækker.
  5. Fourierrækker.
  6. Introduktion til metriske rum.
Engelsk titel

Analysis 1 (An1)

Uddannelse

Bacheloruddannelsen i forsikringsmatematik
Bacheloruddannelsen i fysik
Bacheloruddannelsen i matematik
Bacheloruddannelsen i matematik-økonomi

Målbeskrivelse

Viden:

  • Konvergenskriterier for talfølger og talrækker
  • De vigtigste egenskaber ved funktionsrækker, herunder potensrækker og Fourierrækker
  • Definitioner og sætninger vedrørende generelle metriske rum
  • Konkrete eksempler på metriske rum
  • Anvendelser af potens- og fourierrækker
     

 

Færdigheder:

  • Anvende de gængse konvergenskriterier til at analysere konvergensforhold for talfølger og talrækker i konkrete tilfælde.
  • Argumentere for punktvis/uniform konvergens/divergens af funktionsfølger og -rækker i konkrete tilfælde, herunder kunne bruge majorantkriteriet.
  • Afgøre om ombytning af summation og integration/differentiation er tilladt for konkrete funktionsrækker.
  • Redegøre for konvergensforholdene for potensrækker generelt og at foretage konkrete analyser, herunder bruge de gængse metoder til bestemmelse af konvergensradius.
  • Gennemføre argumentation/manipulation ved brug af ledvis integration og differentiation af potensrækker.
  • Kende Taylorrækkerne for de klassiske funktioner.
  • Bestemme Taylor- og Fourierrækker for en givne funktion, både med og uden elektroniske hjælpemidler.
  • Redegøre for konvergensforholdene for Fourierrækker hvad angår både punktvis og uniform konvergens.
  • Redegøre for, hvad et metrisk rum er, samt kende standardeksempler på sådanne (ud over talrummene).
  • Give forskellige karakteriseringer af kontinuitet/uniform kontinuitet for generelle afbildninger, herunder også \epsilon-\delta definitionen, samt anvende disse til at vise kontinuitet i konkrete situationer.
  • Formulere definitionerne af fuldstændighed og af kompakthed for metriske rum og kende standardeksempler på sådanne.
  • Anvende hovedsætninger vedrørende kontinuerte afbildninger på kompakte metriske rum i argumentationssammenhæng.
     

 

Kompetencer:

  • Analysere konvergensforhold for uendelige rækker af tal og funktioner og andre grænseprocesser for funktioner.
  • Mestre de elementære egenskaber vedrørende potensrækker og Fourierrækker.
  • Håndtere abstrakte strukturer (metriske rum) inden for analyse.

5 timers forelæsning og 4 timers øvelser per uge i 7 uger. Aktiviteter forhindret af helligdage indhentes på fredag eftermiddage. Detaljer meldes ud per Absalon.

Foregående år har følgende lærebog været brugt: Christandl, Eilers og Schlichtkrull: Analyse 1, 7. udgave.

Analyse 0 eller tilsvarende forudsætninger.

Skriftlig
Mundtlig
Individuel
Kollektiv
Løbende feedback i undervisningsforløbet

Der gives skriftlig feedback på 3 afleveringsopgaver, der er indstillingskrav til eksamen.

Ved de teoretiske øvelser præsenterer de studerende herudover besvarelser af opgaver udarbejdet individuelt eller i grupper, og modtager mundtlig feedback herpå fra en studenterinstruktor.

ECTS
7,5 ECTS
Prøveform
Skriftlig stedprøve, 4 timer med opsyn.
Prøveformsdetaljer
Sædvanlig 4 timers stedprøve.
Eksamensforudsætninger

Der stilles 3 skriftlige afleveringsopgaver i løbet af kurset. For at blive indstillet til eksamen skal disse afleveres rettidigt, godkendes og være gyldige.

Hjælpemidler
Alle hjælpemidler tilladt undtagen Generativ AI og internetadgang
Bedømmelsesform
7-trins skala
Censurform
Ingen ekstern censur
Én intern bedømmer
Reeksamen

Samme som ordinær.

Det er et krav for at deltage i reeeksamen at de tre opgavesæt fra kurset er godkendte og gyldige.

Hvis opgavesættene ikke blev godkendt i det ordinære kursusforløb, skal de tre opgavesæt afleveres til bedømmelse så de er godkendt senest tre uger før første dag i reeksamensperioden.

Kriterier for bedømmelse

Den studerende skal på tilfredsstillende måde godtgøre, at vedkommende lever op til fagets målbeskrivelse.

Enkeltfag dagtimer (tompladsordning)

  • Kategori
  • Timer
  • Forelæsninger
  • 35
  • Forberedelse (anslået)
  • 139
  • Teoretiske øvelser
  • 28
  • Eksamen
  • 4
  • Total
  • 206

Kursusinformation

Undervisningssprog
Dansk
Kursusnummer
NMAA04016U
ECTS
7,5 ECTS
Niveau
Bachelor
Varighed

1 blok

Placering
Blok 4
Skemagruppe
A (tirs 8-12 + tors 8-17)
Kapacitet
Ingen begrænsning – medmindre du tilmelder dig i eftertilmeldingsperioden (BA og KA) eller som merit- eller enkeltfagsstuderende.
Studienævn
Studienævn for Matematik og Datalogi
Udbydende institut
  • Institut for Matematiske Fag
Udbydende fakultet
  • Det Natur- og Biovidenskabelige Fakultet
Kursusansvarlig
  • Søren Fournais   (8-6e777d7a7669717b4875697c7036737d366c73)
Gemt den 24-10-2025

Er du BA- eller KA-studerende?

Er du bachelor- eller kandidat-studerende, så find dette kursus i kursusbasen for studerende:

Kursusinformation for indskrevne studerende