Graphs and Groups

Course content

This course covers a number of fundamental topics concerning groups of graph automorphisms, with an emphasis on group-theoretic notions and results.

Topics include:

  1. Fundamentals of graph theory and of group theory
  2. Graph automorphisms, transitive graphs
  3. Group actions on graphs
  4. Cayley graphs, Schreier graphs
  5. Fundamental group of a graph, coverings
  6. Free group: definition, elementary properties
  7. Subgroups of free groups
  8. Hanna Neumann conjecture
Education

MSc Programme in Mathematics
MSc Programme in Mathematics with a minor subject

Learning outcome

After completing the course, the student will have:

Knowledge about the subjects mentioned in the description of the content.

Skills to solve problems concerning the material covered.

The following Competences:

  • Have a good understanding of the fundamental concepts and results presented in lectures, including a thorough understanding of various proofs.
  • Establish connections between various concepts and results, and use the results discussed in lecture for various applications.
  • Be in control of the material discussed in the lectures to the extent of being able to solve problems concerning the material covered.
  • Be prepared to work with abstract concepts (from Graph Theory and Group Theory).
  • Handle complex problems concerning topics within the areas of Graph Theory and Group Theory.

5 hours of lectures and 4 hours of exercises per week for 7 weeks

Basic group theory and linear algebra, as covered by the courses LinAlg and Alg1 or equivalent.

Academic qualifications equivalent to a BSc degree is recommended.

Oral
Collective
Continuous feedback during the course of the semester
ECTS
7,5 ECTS
Type of assessment
Continuous assessment
Type of assessment details
Two written homework assignments and a final 3 hours in-class written exam. Each of the two written homework assignments counts 25% towards the final grade; the students will be given 5 days to work on each. The final 3 hours in-class written exam counts 50% towards the final grade, and it takes place in week 9.
Aid
Only certain aids allowed

All aids allowed for the two written homework assignments. The final 3 hours in-class written exam is without aids.

Marking scale
7-point grading scale
Censorship form
No external censorship
One internal examiner
Exam period

Week 9 of Block 4

Re-exam

Oral examination, 30 minutes with 30 minutes preparation. For the preparation, written aids are allowed. 

Criteria for exam assessment

The student should convincingly and accurately demonstrate the knowledge, skills and competences described under Intended learning outcome.

Single subject courses (day)

  • Category
  • Hours
  • Lectures
  • 35
  • Preparation
  • 130
  • Theory exercises
  • 28
  • Exam
  • 13
  • English
  • 206

Kursusinformation

Language
English
Course number
NMAK23004U
ECTS
7,5 ECTS
Programme level
Full Degree Master
Duration

1 block

Placement
Block 4
Schedulegroup
B
Capacity
No limitation – unless you register in the late-registration period (BSc and MSc) or as a credit or single subject student.
Studyboard
Study Board of Mathematics and Computer Science
Contracting department
  • Department of Mathematical Sciences
Contracting faculty
  • Faculty of Science
Course Coordinator
  • Damian Longin Osajda   (2-6a754673677a6e34717b346a71)
Saved on the 14-02-2024

Are you BA- or KA-student?

Are you bachelor- or kandidat-student, then find the course in the course catalog for students:

Courseinformation of students