Applied Statistics (AppStat)
Course content
Each student carries out a statistical project (in a group) related to an experiment or a numerical investigation preferably delivered by one of the students in the group. A report is written in journal style and presented orally. Besides, a number of statistical themes are taught at lectures and exercise classes: Data types, comparison of two samples by parametric and non-parametric methods, analysis of tables of counts, regression analysis of categorical data, linear and multilinear regression, analysis of variance, basic design of experiments, usage of random effects, and analysis of longitudinal data and of repeated measurements. The student is also introduced to practical techniques for analyzing data in the open source software package R using the RStudio interface.
MSc Programme in Agriculture
MSc Programme in Environmental Science
MSc Programme in Environment and Development
MSc Programme in Global Environment and Development
The course aims at giving the student experience of carrying out
statistical analyses.
After completing the course the student should be able to:
Knowledge:
- recognize certain data types, identify and specify appropriate
statistical models, and argue for the appropriateness.
- explain the prerequisities, prospects and limitations of the
methods.
Skills:
- formulate relevant problems and choose an appropriate statistical
model addressing these problems.
- carry out the actual analysis (computations). This includes model
fitting, model validation and hypothesis testing.
- extract relevant estimates, draw conclusions and communicate the
results from the analysis.
- use the statistical programming language R to carry out the
analyses.
Competences:
- independently formulate scientifically relevant questions -
motivated by data of similar types as those presented in the course
- and answer them by the use of statistical
methods.
During the first part of the course lectures and practical (computer) exercises will run parallel with the initial part of the project work, while the second part will concentrate on the projects. At the oral exam the students will make individual conference-style presentations of their projects.
The student must have followed an introductory course in
statistics and therefore know the basic statistical concepts
(variation, estimation, confidence intervals, hypothesis tests) and
have experience with simple statistical models (at least oneway
ANOVA, linear regression).
Academic qualifications equivalent to a BSc degree is
recommended.
- ECTS
- 7,5 ECTS
- Type of assessment
-
Written assignmentOral examination, 30 minutes
- Type of assessment details
- Description of Examination: Each group writes a report in a journal paper format about their project. At the oral defense the students make individual conference style presentations of their projects with emphasis on the statistical issues. The oral examination is without preparation and divided into 20 minutes presentation by the student and 10 minutes questioning from the examiner. The grade is awarded on the basis of an overall assessment of the report and the oral exam.
- Aid
- All aids allowed
- Marking scale
- passed/not passed
- Censorship form
- No external censorship
Internal examiners
- Re-exam
-
As the ordinary exam. If the student has not handed in a passable report during the course, the student must hand in a report no later than three weeks before the beginning of the re-exam week.
Criteria for exam assessment
In order to pass the course the student should hand in a passable report and demonstrate the knowledge, skills and competences described under Learning Outcome at the oral examination.
Single subject courses (day)
- Category
- Hours
- Lectures
- 24
- Preparation
- 70
- Theory exercises
- 24
- Project work
- 84
- Guidance
- 3
- Exam
- 1
- English
- 206
Kursusinformation
- Language
- English
- Course number
- NMAK14003U
- ECTS
- 7,5 ECTS
- Programme level
- Full Degree Master
- Duration
-
1 block
- Placement
- Block 2
- Schedulegroup
-
C
- Capacity
- 25
The number of places might be reduced if you register in the late-registration period (BSc and MSc) or as a credit or single subject student. - Studyboard
- Study Board of Natural Resources, Environment and Animal Science
Contracting department
- Department of Mathematical Sciences
Contracting faculty
- Faculty of Science
Course Coordinators
- Bo Markussen (5-64716f6374426f63766a306d7730666d)
- Anton Rask Lundborg (3-71827c507d7184783e7b853e747b)
Se skema
Er du BA- eller KA-studerende?
Kursusinformation for indskrevne studerende