Introduction to Atomic Physics
Course content
The course gives an introduction to the physics of atoms, their structure, their spectra, and their response to external electromagnetic fields, as relevant to students in physics, nanoscience, chemistry, astronomy, geophysics, biophysics, and medical physics. The course addresses 2. and 3. year students and will enable students to follow MSc-courses in quantum optics, atomic physics, laser physics, quantum chemistry, etc..
BSc Programme in Physics
Skills
A student who has attended the course Introduction to atomic
physics can:
- write down the Schrödinger equation for the hydrogen atom, outline the procedure for arriving at its solution, describe the solutions, explain the physical mechanisms responsible for fine structure, Lamb shift, and hyperfine structure, and describe the importance of the hydrogen atom in the development of physics.
- explain the principles for interaction between an atom and external electromagnetic fields, including selection rules and why they exist, and explain the interaction between an atom and external fields as they materialise in Zeeman effect and Stark effect.
- explain how an understanding of the hydrogen atom leads to an understanding of two-electron atoms, many-electron atoms, and the principles leading to the periodic system of the elements.
- explain the origin of molecular bonds, the importance of the Born-Oppenheimer approximation, and how the internal degrees of freedom give rise to molecular spectra.
- describe important laboratory techniques and applications in various fields of physics (e.g. quantum physics, time metrology or medical physics), interpret the spectra of alkali atoms and simple molecules, explain the physical mechanisms behind the spectral line profiles, and discuss some important applications of spectroscopy.
Knowledge
The student will obtain knowledge on such topics as: the hydrogen
atom, radiation theory, relativistic effects, Zeeman and Stark
effect, Lambshift, hyperfine structure, two and multi-electron
systems, alkali atoms, the Thomas-Fermi atomic model, the structure
and spectra of diatomic molecules.
Competences
The student learns to use the knowledge of e.g. quantum mechanics
gained in previous courses on atoms. Through this course, the
student gains the competences to pursue further studies within the
subject, e.g. more advanced courses or projects.
Course structure: The course runs over 7 weeks, each containing two 4-hour periods. Each period consists of two hours of lectures and two hours of exercises, mainly problem solving.
See Absalon for definitive literature list. An example of a relevant book is:
Christopher J. Foot: Atomic Physics, Oxford University Press (2005)
EM2, KM1 + 2 or the equivalent.
- ECTS
- 7,5 ECTS
- Type of assessment
-
Oral examination, 25 min
- Type of assessment details
- No Preparation time.
- Aid
- Without aids
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
Several internal examiners
- Re-exam
-
Samme som den ordinære eksamen.
Criteria for exam assessment
See Learning Outcome.
Single subject courses (day)
- Category
- Hours
- Lectures
- 28
- Preparation
- 149,5
- Theory exercises
- 28
- Exam
- 0,5
- English
- 206,0
Kursusinformation
- Language
- English
- Course number
- NFYB13007U
- ECTS
- 7,5 ECTS
- Programme level
- Bachelor
- Duration
-
1 block
- Placement
- Block 1
- Schedulegroup
-
C
- Capacity
- No limitation – unless you register in the late-registration period (BSc and MSc) or as a credit or single subject student.
- Studyboard
- Study Board of Physics, Chemistry and Nanoscience
Contracting department
- The Niels Bohr Institute
Contracting faculty
- Faculty of Science
Course Coordinators
- Jean-Baptiste Sylvain Béguin (7-6d65686a786c714371656c316e7831676e)
- Albert Schliesser (17-646f656875773176666b6f6c68767668754371656c316e7831676e)
- Jörg Helge Müller (6-6f776e6e67744270646b306d7730666d)
Teacher
Jean-Baptiste Sylvain Béguin (jbeguin@nbi.ku.dk)
Albert Schliesser (aschlies@nbi.ku.dk)
Jörg Helge Müller (muller@nbi.ku.dk)
Are you BA- or KA-student?
Courseinformation of students