Continuous Time Finance (FinKont)

Course content


  • Stochastic integrals and Ito formula
  • Stochastic differential equations
  • Arbitrage
  • Complet markets
  • Martingale methods in finalcial mathematics

MSc Programme in Actuarial Mathematics
MSc Programme in Mathematics-Economics

Learning outcome

Ito calculus, stochastic differential equation and methods applied in continuous time financial models.

At the end of the course, the students are expected to be able to

  • Apply theorems on stochastic integrals and stochastic differential equations, including theorems such as: Ito's formula, Feynman-Kac representations, martingale representations, Girsanov's theorem.
  • Determine arbitrage free prices of financial claims including determining partial differential equations for price functions.
  • Deduce if a diffusion model for the market is arbitrage free and if it is complete and to be familiar with the 1st and 2nd fundamental theorems of asset pricing including the determination of martingale measures.
  • Apply concepts for portfolios including self financing and replicating.
  • Apply the theory to determine the Black-Scholes price for a call option.


To provide operational qualifications and insight in modern financial methods.

4 hours of lectures and 3 hours of exercises per week for 7 weeks.

Example of course litterature:

Thomas bjork: "Arbitrage Theory in Continuous Time"

Sandsynlighedsteori (Sand) - alternatively Mål- og integralteori (MI) from previous years.
Either Stochastic Processes 2 or Advanced Probability Theory 1 (VidSand1).
Either Finansiering 1 (Fin1), Grundlæggende livsforsikringsmatematik 1 (Liv1), or similar.

Academic qualifications equivalent to a BSc degree is recommended.

Continuous feedback during the course of the semester

Upon active participation in  exercise classes, teaching assistant will provide feedback

7,5 ECTS
Type of assessment
Written examination, 3 hours
Type of assessment details
All aids allowed
Marking scale
7-point grading scale
Censorship form
No external censorship
One internal examiner.

30 minutes oral exam without preparation time and no aids, with several internal examiners.

Criteria for exam assessment

The student should convincingly and accurately demonstrate the knowledge, skills and competences described under Intended learning outcome.

Single subject courses (day)

  • Category
  • Hours
  • Lectures
  • 28
  • Preparation
  • 154
  • Theory exercises
  • 21
  • Exam
  • 3
  • English
  • 206


Course number
7,5 ECTS
Programme level
Full Degree Master

1 block

Block 2
No limit
The number of seats may be reduced in the late registration period
Study Board of Mathematics and Computer Science
Contracting department
  • Department of Mathematical Sciences
Contracting faculty
  • Faculty of Science
Course Coordinator
  • Jesper Lund Pedersen   (6-6c6775726774426f63766a306d7730666d)
Phone+ 45 35 32 07 75, office: 04.3.11
Saved on the 28-02-2023

Are you BA- or KA-student?

Are you bachelor- or kandidat-student, then find the course in the course catalog for students:

Courseinformation of students