Computational Chemistry

Course content

Theoy and application of molecular mechanics methods, statistical mechanics methods, statistical computational method, Ab Initio methods, Density Functional Theory methods, Hybrid Quantum / Classical methods, methods for simulation of molecular properties and spectra, methods for  simulation of thermodynamical properties, methods for simulation of chemical reactions, molecular dynamics methods for chemical problems within organic and inorganic chemistry, biochemistry, atmospheric chemistry, spectroscopy. The lectures concern the theories behind the different methods and the practical application of them on chemical problems.The computer exercises help the student to apply modern computational chemistry software and complete the computational chemistry project that each student has to do in order to pass the course.

Education

MSc Programme in Chemistry
MSc Programme in Chemistry with a minor subject
MSc Programme in Nanoscience

Learning outcome

Knowledge:
The student will be able to derive, analyze, and utilize the following items:

  • Molecular mechanics methods,
  • ab initio methods,
  • density functional theory methods,
  • hybrid quantum-classical methods
  • simulating molecular properties and thermodynamical properties
  • molecular reactions dynamic


Skills:
The student will be able to establish, evaluate and complete a theoretical investigation of a chemical problem using modern scientific computing software within chemistry.



Competence
The student will be able to evaluate a concrete computational chemistry problem and utilize the most efficient and suitable calculation method.
 

Lectures, computer exercises and discussion sessions.

The home page of the course provides the information about books and material.

Academic qualifications equivalent to a BSc degree is recommended.

Oral
Individual
Collective
ECTS
15 ECTS
Type of assessment
Written assignment
Oral examination, 30 min (without preparation)
Type of assessment details
---
Aid
All aids allowed
Marking scale
7-point grading scale
Censorship form
No external censorship
several internal examiners
Re-exam

Same as ordinary exam.  

Any deficiencies in the report must be corrected and a new oral exam is held.

Criteria for exam assessment

The report should be written in the form of a scientific article. It should contain: abstract, keywords, introduction, theory + method, computational results and discussion ending with a conclusion. There has to be figures, tables and references.
It should contain the motivation for your work, a short description of related work, goal and relevance of your work, Argumentation for why you have chosen the given method.
Details of the calculations (used programs, basis set, geometries, etc), in short all the
information needed to reproduce your calculations. Presentation of your results (use figures, pictures if necessary tables) and discussion of the results, such as what did you learn from your results?

Single subject courses (day)

  • Category
  • Hours
  • Lectures
  • 82
  • Preparation
  • 143,5
  • Practical exercises
  • 39
  • Project work
  • 147
  • Exam
  • 0,5
  • English
  • 412,0

Kursusinformation

Language
English
Course number
NKEA07016U
ECTS
15 ECTS
Programme level
Full Degree Master
Duration

2 blocks

Placement
Block 1 And Block 2
Schedulegroup
A
Capacity
No admission restriction
The number of seats may be reduced in the late registration period
Studyboard
Study Board of Physics, Chemistry and Nanoscience
Contracting department
  • Department of Chemistry
Contracting faculty
  • Faculty of Science
Course Coordinator
  • Kurt Valentin Mikkelsen   (3-6d6f6b42656a676f306d7730666d)
Teacher

Kurt V. MIkkelsen, Stephan P. A. Sauer, Gemma C. Solomon, Thorsten Hansen

Saved on the 28-02-2023

Er du BA- eller KA-studerende?

Er du bachelor- eller kandidat-studerende, så find dette kursus i kursusbasen for studerende:

Kursusinformation for indskrevne studerende