The Early Universe

Course content

The aim of the course is to familiarize students with modern theories of cosmology and particle physics in the early universe and how they explain the formation of matter and the present evolution of our universe. The course will cover the thermal history of the early universe, the theory of inflation, evidence for dark matter and dark energy, and the growth of structure and the formation of galaxies. Students will gain experience in interpreting data and an overview of classic scientific literature. The course will establish a solid foundation for a M.Sc. project in cosmology, astrophysics or particle physics.

Learning outcome


To achieve the goals of the course and exam the students should be able to describe:

  • The dynamical evolution of the expanding universe in the standard cosmological model and its dependence on the matter and energy content of the universe
  • The motivation for inflation and its physical consequences
  • The Hot Big Bang and the thermal history of the universe
  • The origin and basic interpretation of the Cosmic Microwave Background (CMB)
  • Examples of evidence for Dark Matter and Dark Energy and possible explanations for their origin
  • Basic principles of structure formation and galaxy formation 

The student is expected to gain the ability to:

  • Perform analytic and numerical calculations of the dynamics of an expanding universe
  • Perform numerical calculations of structure formation in a range of cosmological models
  • Summarise and critically interpret fundamental scientific articles within the field


The course will provide students with an overview of the connections between modern cosmology, astrophysics and particle physics. Students will gain the knowledge and skills to be able to critically evaluate the standard cosmological model, observational evidence for the model and its limitations, in preparation for MSc projects.

Lectures and exercises, including computer exercises, student presentations.

See Absalon for final course material. The following is an example of expected course literature:

D. Bauman, “Cosmology”, 2022

J. Peacock, “Cosmological Physics”, 2010

General skills in mathematics and computation, atomic and nuclear physics are required according to the MSc program in Physics.
A BSc course on cosmology and an advanced course on particle physics are recommended for basic knowledge.
Academic qualifications equivalent to a BSc degree are recommended.

7,5 ECTS
Type of assessment
Continuous assessment
Written assignment, 9 hours
Type of assessment details
The final grade will be based on three components:
(i) 7 homework assignments (1/3 of the final grade)
(ii) Presentation of a scientific article (1/3 of the final grade)
(ii) Take-home exam (1/3 of the final grade)
Students must take part in every component in order to pass the course (including all homework assignments). Students do not need to pass every part of the 3 exam components separately, it is enough to pass overall. However, investing the time in doing the homework assignments is considered to be a crucial part of the learning experience for this course and the points gathered from these do carry 1/3 of the final grade.
All aids allowed
Marking scale
7-point grading scale
Censorship form
No external censorship
Several internal examiners

Same as ordinary exam. The student can re-use any parts of the exam that were already passed. For missing homework assignments, contact the course coordinator for new assignments to submit. For missing presentation, a new presentation can be held in the re-exam week. For a missing take-home exam, a new exam is held in the re-exam week.

Criteria for exam assessment

The student should convincingly and accurately demonstrate the knowledge, skills and competences described under learning outcome.

Single subject courses (day)

  • Category
  • Hours
  • Lectures
  • 42
  • Preparation
  • 132
  • Practical exercises
  • 24
  • Exam
  • 8
  • English
  • 206


Course number
7,5 ECTS
Programme level
Full Degree Master

1 block

Block 4
The number of seats may be reduced in the late registration period
Study Board of Physics, Chemistry and Nanoscience
Contracting department
  • The Niels Bohr Institute
Contracting faculty
  • Faculty of Science
Course Coordinator
  • Charlotte Mason   (15-666b64756f727777683170647672714371656c316e7831676e)

Charlotte Mason
Oleg Ruchayskiy

Saved on the 28-02-2023

Are you BA- or KA-student?

Are you bachelor- or kandidat-student, then find the course in the course catalog for students:

Courseinformation of students