Condensed Matter Theory 2 (CMT2)
Course content
The aim of the course is to provide the student with an overview of modern topics in quantum condensed matter systems, including broken symmetry in quantum phases (superconductivity), and to familiarize them with more advanced methods. The course uses both the operator version of many-body physics taught in Condensed Matter Theory 1, and the functional path integral methods, which will be introduced in the course.
MSc Programme in Physics
Skills
Participants are expected to learn to:
-
Explain the mechanism behind formation of a superconducting condensate
-
Use mean-field theory in fermionic many-body systems using both the operator and functional integral methods.
-
Read and explain to others modern theoretical literature in condensed matter physics
Knowledge
After the course, the student will understand the formulation of
many-body physics in the language of coherent state path integrals
and will be able to apply this to physical models for systems with
broken symmetry, e.g., ferromagnetic or superconducting
transitions.
Competences
This course will provide the students with a competent background
for further studies within this research field, i.e. a M.Sc.
project in theoretical condenses matter physics, and it will
provide the students with mathematical tools that have application
in range of fields within and beyond physics.
Lectures, exercises and project work.
Lecture notes and recommended text books to be announced on the course homepage in Absalon.
The student is expected to have followed courses on condensed
matter physics and condensed matter theory (up to 22.5 ECTS).
Academic qualifications equivalent to a BSc degree is
recommended.
- ECTS
- 7,5 ECTS
- Type of assessment
-
Oral examination, 20 minContinuous assessment
- Type of assessment details
- The evaluation has two components: (a) a written report on a
research paper (25%), and (2) a 20 minute oral exam without time
for preparation (75%).
Each part of the exam is assessed individually and the final grade is given on this basis. - Aid
- Without aids
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
More internal examiners
- Re-exam
-
Same format as the regular exam. A report done for the regular exam can be transferred or new one can be written.
Criteria for exam assessment
see learning outcome
Single subject courses (day)
- Category
- Hours
- Lectures
- 28
- Preparation
- 121
- Theory exercises
- 28
- Project work
- 24
- Guidance
- 4
- Exam
- 1
- English
- 206
Kursusinformation
- Language
- English
- Course number
- NFYK10003U
- ECTS
- 7,5 ECTS
- Programme level
- Full Degree Master
- Duration
-
1 block
- Placement
- Block 3
- Schedulegroup
-
B
- Capacity
- No restriction
The number of seats may be reduced in the late registration period - Studyboard
- Study Board of Physics, Chemistry and Nanoscience
Contracting department
- The Niels Bohr Institute
Contracting faculty
- Faculty of Science
Course Coordinator
- Jens Paaske (6-827373857d775280747b407d8740767d)
Are you BA- or KA-student?
Courseinformation of students