Introduction to Atomic Physics

Course content

The course gives an introduction to the physics of atoms, their structure, their spectra, and their response to external electromagnetic fields, as relevant to students in physics, nanoscience, chemistry, astronomy, geophysics, biophysics, and medical physics. The course addresses 2. and 3. year students and will enable students to follow MSc-courses in quantum optics, atomic physics, laser physics, quantum chemistry, etc..


BSc Programme in Physics

Learning outcome

A student who has attended the course Introduction to atomic physics can:

  • write down the Schrödinger equation for the hydrogen atom, outline the procedure for arriving at its solution, describe the solutions, explain the physical mechanisms responsible for fine structure, Lamb shift, and hyperfine structure, and describe the importance of the hydrogen atom in the development of physics.
  • explain the principles for interaction between an atom and external electromagnetic fields, including selection rules and why they exist, and explain the interaction between an atom and external fields as they materialise in Zeeman effect and Stark effect.
  • explain how an understanding of the hydrogen atom leads to an understanding of two-electron atoms, many-electron atoms, and the principles leading to the periodic system of the elements.
  • explain the origin of molecular bonds, the importance of the Born-Oppenheimer approximation, and how the internal degrees of freedom give rise to molecular spectra.
  • describe important laboratory techniques and applications in various fields of physics (e.g. quantum physics, time metrology or medical physics), interpret the spectra of alkali atoms and simple molecules, explain the physical mechanisms behind the spectral line profiles, and discuss some important applications of spectroscopy.

The student will obtain knowledge on such topics as: the hydrogen atom, radiation theory, relativistic effects, Zeeman and Stark effect, Lambshift, hyperfine structure, two and multi-electron systems, alkali atoms, the Thomas-Fermi atomic model, the structure and spectra of diatomic molecules.

The student learns to use the knowledge of e.g. quantum mechanics gained in previous courses on atoms. Through this course, the student gains the competences to pursue further studies within the subject, e.g. more advanced courses or projects.

Course structure: The course runs over 7 weeks, each containing two 4-hour periods. Each period consists of two hours of lectures and two hours of exercises, mainly problem solving.

See Absalon for definitive literature list. An example of a relevant book is:

Christopher J. Foot: Atomic Physics, Oxford University Press (2005)

EM2, KM1 + 2 or the equivalent.

Continuous feedback during the course of the semester
7,5 ECTS
Type of assessment
Oral examination, 25 min
Type of assessment details
No Preparation time.
Without aids
Marking scale
7-point grading scale
Censorship form
No external censorship
Several internal examiners

Samme som den ordinære eksamen.

Criteria for exam assessment

See Learning Outcome.

Single subject courses (day)

  • Category
  • Hours
  • Lectures
  • 28
  • Preparation
  • 149,5
  • Theory exercises
  • 28
  • Exam
  • 0,5
  • English
  • 206,0


Course number
7,5 ECTS
Programme level

1 block

Block 1
No restriction to number of participants
The number of seats may be reduced in the late registration period
Study Board of Physics, Chemistry and Nanoscience
Contracting department
  • The Niels Bohr Institute
Contracting faculty
  • Faculty of Science
Course Coordinator
  • Albert Schliesser   (17-646f656875773176666b6f6c68767668754371656c316e7831676e)

Albert Schliesser (

Saved on the 21-03-2023

Are you BA- or KA-student?

Are you bachelor- or kandidat-student, then find the course in the course catalog for students:

Courseinformation of students