General Relativity and Cosmology
Course content
The purpose of this course is that the student obtains a basic
understanding of general relativity and its applications.
The first part of the course gives an introduction to
Einstein's theory of general relativity. The second part of the
course gives an introduction to its applications to planetary
motion, bending of light, black holes, gravitational waves and
cosmology.
MSc Programme in Physics
MSc Programme in Physics with minor subject
Skills
 When the course is finished it is expected that the student is able to explain Einsteins equivalence principle, explain how this leads to introducing a general metric for spacetime, and describe the physical and mathematical meaning of geodesic motion.
 The student should be able to apply the principle of general covariance along with the mathematical tools of tensors and covariant derivatives to formulate laws of nature.
 The student should understand the notion of curvature of spacetime and explain how this can be used to arrive at the Einstein equations.
 The student should be able to derive the Schwarzschild geometry around a static and spherically symmetric distribution of matter, describe the geodesics in this geometry and apply this to planetary orbits in the solar system and the bending of light around massive objects.
 The student should be able to show how the Schwarzschild solution gives rise to the notion of black holes.
 The student should be able to interpret the Kerr metric as a rotating black hole.
 The student should be able to explain what a gravitational wave is and how it affects the relative motion of test particles.
 Finally, the student should be able to explain the basic ingredients of cosmology as derived in the framework of general relativity, including the evolution of the scale factor of the universe given different energy momentum components.
Knowledge
The course introduces the student to the concept of gravity as a
property of the geometry of spacetime itself, leading to
Einstein's theory of general relativity. This
includes Einsteins equivalence principle, the concept of
general covariance, geodesic motion and the Einstein equations. As
applications we will discuss the Schwarzschild solution and its
geodesics, black holes, gravitational waves and cosmology.
Competences
This course makes use of previously obtained knowledge
in Newtonian mechanics, special relativity and vector
calculus as well other related fields such as astrophysics and
particle physics. After the course, the student should have a
better picture of how general relativity fits into the latter
subjects. Furthermore, the course is a good preparation for other
more advanced courses in for example cosmology, highenergy physics
and string theory.
Lectures and theoretical exercises
See Absalon for final course material. The following is an example of expected course litterature.
Lecture notes by Troels Harmark
The mandatory courses on first and second year of the bachelor
(particularly the courses covering classical mechanics, special
relativity, mathematical methods, electromagnetism). Analytical
mechanics is not a necessary prerequisite.
Academic qualifications equivalent to a BSc degree is
recommended.
 ECTS
 7,5 ECTS
 Type of assessment

Oral examination, 25 min
 Type of assessment details
 No preparation time.
 Aid
 Only certain aids allowed
One "A4" piece of paper with the students notes.
 Marking scale
 7point grading scale
 Censorship form
 No external censorship
More internal examiners
Criteria for exam assessment
see learning outcome
Single subject courses (day)
 Category
 Hours
 Lectures
 35
 Preparation
 149,5
 Practical exercises
 21
 Exam
 0,5
 English
 206,0
Kursusinformation
 Language
 English
 Course number
 NFYA04022U
 ECTS
 7,5 ECTS
 Programme level
 Full Degree Master
 Duration

1 block
 Placement
 Block 2
 Schedulegroup

A
 Capacity
 No restriction
The number of seats may be reduced in the late registration period  Studyboard
 Study Board of Physics, Chemistry and Nanoscience
Contracting department
 The Niels Bohr Institute
Contracting faculty
 Faculty of Science
Course Coordinator
 Troels Harmark (76c65767165766f4472666d326f7932686f)
Timetable
Are you BA or KAstudent?
Courseinformation of students