Evolutionary Medicine

Course content

The course covers the following set of central questions in Evolutionary Medicine:
 

WHY AND HOW DO PANDEMICS ARISE? How exploring zoonotic origins now and in human history can teach us to be better manage them; how virulence evolves, illustrated with relevant recent examples such as Ebola, HIV, COVID-19 and influenza.
 

WHY DO WE SUFFER DEGENERATIVE DISEASES? Why ageing is unavoidable, but obesity is not; why our evolutionary history makes us so vulnerable to diseases associated with our life style; why so many of us are affected by allergies today.
 

WHY DO WE FACE MAJOR RESISTANCE CHALLENGES? Why microbes thrive when we use antibiotics carelessly; a fundamentally new view of cancer as a natural selection process between mutant cell lineages.


HOW CAN WE EXPLAIN REPRODUCTIVE AND MENTAL DISEASES? Why natural selection on our ancestors did not remove these disorders; how our vulnerability makes sense because mild forms of these diseases can be beneficial.

Education

MSc Programme in Biochemistry
MSc Programme in Biology
MSc Programme in Biology with a minor subject
MSc Programme in Molecular Biomedicine

Learning outcome

A thorough understanding of issues in medical research and practice where evolutionary thinking can provide a useful perspective. Students will gain a detailed perception of the ways in which natural selection, random events and history have shaped humans and their pathogens. The course will help students to integrate evolutionary, medical and molecular approaches.
 

Students completing the course will be able to:
 

  • explain how evolutionary hypotheses generate insightful predictions into why humans are vulnerable to infectious and degenerative diseases.
  • explain that resistance to antibiotics and cancer drugs emerge almost inevitably, and that the rate of resistance evolution may be reduced by lower doses and combination of different drugs.
  • explain that evolutionary trade-offs and reproductive conflicts make aging unavoidable, and the continued existence of pregnancy disorders and certain mental diseases is understandable from an evolutionary perspective.
  • explain why and where emerging infectious diseases arise, and how achieving herd immunity is the best possible outcome when public health officials manage an epidemic outbreak of infectious disease.
  • explain that many modern lifestyle diseases are likely triggered by physical and psychological traits that were maintained by natural selection until a few generations ago


Knowledge:

By completing the course the student will be able to understand and reflect on:

  • Why the COVID-19 pandemic should not come as a surprise, and why vaccination programs are critical to controlling infectious diseases even when not everybody is vaccinated.
  • Why 7-10,000 years of farming in humans has been too short to remove lactose intolerance and gluten allergy, but too long to withstand current widespread allergies in human populations.
  • Why we will all die of cancer unless we die of something else first.
  • How the genomic revolution has given us new insights, but why we still need evolutionary thinking to formulate the right research questions about human health and disease.
  • How human problems of health and disease often have deep roots in the social evolution of our own species and of our microbiomes and pathogens.


Skills:

  • Communicate the deep causes of human vulnerability to disease.
  • Explain why modelling, field research and molecular approaches are all needed for understanding medical challenges.
  • Explain that new pandemics are a significant problem mostly because nobody is immune when they hit for the first time.
  • That new antibiotics are difficult to obtain and that resistance problems to existing antibiotics and cancer drugs could possibly be avoided by more careful application.
  • Engage in qualified discussions on how to prioritize disease prevention versus disease treatment.


Competences:

By completing the course the student can:

  • explain why evolutionary thinking is necessary to understand why we get sick.
  • explain that nothing in medicine ultimately makes sense except in the light of current or past natural selection.
  • has trained their scientific imagination to understand the evolved strategies of pathogens and cancer cells.
  • explain that the human body is not a harmonious engineered machine but a bundle of evolved compromises that often involve deep evolutionary conflicts.
  • reflect on the evolutionary histories of ‘a disease’ and ‘a patient’ and on how that is useful for posing relevant questions that standard medical curricula rarely ask.

About nine hours of lectures/​seminars/​student presentations per week for the first seven weeks. Students can either do an individual presentation of original research papers during these first seven weeks or contribute with questions for discussions. All students will be involved in group work to present an overview of one of the four themes in the final symposium at the end of week 7. All students must hand in a 2-page essay on the topic of their oral presentation before the end of week 7 to take the exam.

See Absalon.

Academic qualifications equivalent to a BSc degree is recommended.

Oral
Collective
ECTS
7,5 ECTS
Type of assessment
Oral examination, 25 minutes
Type of assessment details
Oral examination without preparation.
Exam registration requirements

To participate in the exam the students most hand in a 2-page essay during the course. 
 

Marking scale
7-point grading scale
Censorship form
No external censorship
Several internal examiners
Re-exam

The same as ordinary exam. Oral examination without preparation (25 minutes). 


If the requirement of handing in a 2-page essay is not fulfilled, the requirement can be fulfilled before the reexam. The student must hand in the essay no later than three weeks before the reexam ends and the essay must be approved before the reexam.

Criteria for exam assessment

In order to obtain the grade 12 the student should convincingly and accurately demonstrate the knowledge, skills and competences described under Learning Outcome.

Single subject courses (day)

  • Category
  • Hours
  • Lectures
  • 36
  • Class Instruction
  • 27
  • Preparation
  • 123
  • Project work
  • 20
  • English
  • 206

Kursusinformation

Language
English
Course number
NBIA08004U
ECTS
7,5 ECTS
Programme level
Full Degree Master
Duration

1 block

Placement
Block 3
Schedulegroup
C
Capacity
50
The number of seats may be reduced in the late registration period
Studyboard
Study Board for the Biological Area
Contracting department
  • Department of Biology
Contracting faculty
  • Faculty of Science
Course Coordinator
  • Michael Poulsen   (8-505372786f76687143656c72316e7831676e)
Teacher

Professor Michael Poulsen, Professor Tom Gilbert, Associate Professor Sandra Andersen, Associate Professor Jonas Stenløkke, Assistant Professor Josefin Stiller and guest lecturers

Saved on the 28-02-2023

Are you BA- or KA-student?

Are you bachelor- or kandidat-student, then find the course in the course catalog for students:

Courseinformation of students