Numerical Methods in Physics
Course content
The course is a hands-on introduction to the numerical and computational techniques used in modern physics. While most bachelor level physics courses present examples where there exist elegant analytical solutions, most real-world problems are solved with the help of computers and numerical techniques.
Focus will be on the application of numerical methods to example problems, but will also touch upon the theoretical foundations of many of these methods.
BSc Programme in Physics
Skills
After the course the students will be able to program numerical methods for solving numerous problems that arise in physics. These include:
- Initial-value and boundary-value problems for Ordinary Differential Equations
- Partial Differential Equations
- Stochastic Simulations
Knowledge
The student will be able to recognise the different approaches that
can be used to tackle a problem numerically and will understand the
differences between using explicit vs. implicit time-stepping,
using regular or irregular-spaced grids, as well as grid-free
approaches such as spectral methods.
Competences
The student will gain some overview of numerical tools frequently
used in modern physics. In addition, the student will be aware of
potential caveats and will be able to better direct themselves in
the extensive literature on numerical and computational
techniques.
Lectures, exercises and project in groups.
Lecture notes will be available for the course. Further reading material will be posted on Absalon.
Basic programming (Python or any other programming language) and mathematical skills (linear algebra and differential equations).
It is expected that the student brings laptop with Python or similar programming environment installed. Examples will be given in Python. Observe that the course takes place over the 4 weeks and will thus require intensive participation.
- ECTS
- 7,5 ECTS
- Type of assessment
-
Continuous assessmentDuring the course students will have to hand in 3 written reports and do a group project followed up by presentation in class. The reports and the project must be approved to pass the course.
- Aid
- All aids allowed
- Marking scale
- passed/not passed
- Censorship form
- No external censorship
one internal examiner
Criteria for exam assessment
see 'skills'
Single subject courses (day)
- Category
- Hours
- Lectures
- 15
- Preparation
- 40
- Exercises
- 95
- Project work
- 56
- English
- 206
Kursusinformation
- Language
- English
- Course number
- NFYB14002U
- ECTS
- 7,5 ECTS
- Programme level
- Bachelor
- Duration
-
4 weeks in August 2022, exact dates TBD.
- Schedulegroup
-
full time
- Capacity
- 30 students
- Studyboard
- Study Board of Physics, Chemistry and Nanoscience
Contracting department
- The Niels Bohr Institute
Contracting faculty
- Faculty of Science
Course Coordinator
- Julius Bier Kirkegaard (17-4f7a716e7a7833506e77706a6c666677694573676e33707a336970)
Are you BA- or KA-student?
Courseinformation of students