Synthetic Biology
Course content
Synthetic biology applies a novel conceptual framework to
biology. By introducing engineering concepts, synthetic biology
forms the basis for new developments in medicine, pharmaceutical
science, plant biology, sustainable development, and material
science. Fundamental technologies that are central to synthetic
biology include: DNA synthesis, high-throughput genetic
manipulation methods, facile access to off-the-shelf standardized
biological parts, registries and foundries of parts, and
computer-aided genetic design. Advanced tools that enable the
integration of basic synthetic units into multi component devices
are continuously being developed, and a variety of modern
analytical techniques and computational tools are applied in the
design and testing of new systems. It is foreseen that synthetic
biology will adderess several of the world’s most pressing
challenges.
The course will bridge across different areas of contemporary
synthetic biology. It will start from metabolic engineering of
organisms for the production of high-value compounds and continue
to explore topics at the frontier of synthetic biology, such as
biosensors, gene circuits, synthetic metabolism, synthetic
evolution, minimal organisms, etc. Some examples of topics covered
in the course are given below:
1. General concepts and enabling technologies for synthetic biology
2. Plant metabolic engineering
3. Engineering photosynthetic organisms for light-driven synthesis
4. Yeast metabolic engineering for the production of high-value
compounds
5. Single molecule fluorescence microscopy for the analysis of
synthetic biosystems
6. Lipid membranes as tools for synthetic biology
7. Whole-cell biosensors
8. Engineering and evolution of synthetic metabolic pathways
9. Biosafety-Biosecurity
Beside the selected topics, the course includes a journal club where hot topics in synthetic biology are discussed.
In addition to the lectures, a focal part of the course is the development of specific case studies by the students. In groups, the students are invited to bring their own synthetic biology ideas to life by conceiving and designing a complete synthetic biology project. The case studies include the complete activities from conceptualization to experimental design, intellectual property issues, commercialization strategy, communication and human practices, ethical aspects, and consideration of biosecurity issues.
MSc Programme in Biochemistry
MSc Programme in Biotechnology
MSc Programme in Biotechnology with a minor subject
MSc Programme in Molecular Biomedicine
Participants will obtain broad knowledge on the main
subject areas of synthetic biology with emphasis on
interdisciplinary studies. A wide variety of topics in metabolic
engineering, biochemistry, protein engineering, biotechnology,
nano-technology, and structural biology will be covered. These
insights will develop creativity and the ability to work across
disciplines. By introducing advanced techniques from various
research areas, students will acquire practical skills that can be
applied to other research fields. The course will enhance group
collaboration and interdisciplinary communication.
Knowledge
1. Understanding of the basic concepts of synthetic biology.
2. Acquisition of the common vocabulary essential for synthetic
biology (e.g. standard part, chassis, etc.).
3. Familiarization with specific scientific, ethical, and
regulatory aspects.
4. Knowledge of the prospects of combining biology with engineering
and technology.
5. Broad insight and coherent knowledge on interdisciplinary
research.
6. Familiarization with the most recent published literature in the
field and insight into ongoing research.
Skills
1. Understand how fundamental tools can be applied to the
engineering of biology.
2. Identify aspects of biotechnology that faciltate or prevent the
faster, reliable programming of natural systems.
3. Understand current and future applications of synthetic biology.
4. Apply fundamental laboratory approaches into engineering
biology.
5. Ability to engage in interdisciplinary research.
6. Preparation of reports and proper handling of scientific
literature.
Competences
1. Ability to apply synthetic biology concepts and principles to
solve a real life problem or develop new applications.
2. Ability to discuss the public concerns and ethical dilemmas and
the potential solutions offered by synthetic biology.
3. Capability to find a solution for a problem and work
independently.
4. Able to apply the concepts and techniques of synthetic biology
to other subjects at a high academic level.
5. Able to work efficiently in a collaborative work situation.
6. Ability to prepare and present oral and written work.
Lecture: Delivery of material in lecture format (40%) Discussion or group work & case studies (30%) Lab work: Demonstrations, experiments, simulations (30%)
A combination of original research papers, review articles and laboratory manual
The equivalent of a BSc in natural science (biology, biochemistry, biotechnology, chemistry, physics or medical science).
- ECTS
- 7,5 ECTS
- Type of assessment
-
Oral examination, 25 min (no preparation time)Individual oral examination based on presentation of case study and discussion of and questions to the written experimental reports and to synthetic biology in general.
Weight: Oral examination 100% - Aid
- All aids allowed
- Marking scale
- 7-point grading scale
- Censorship form
- No external censorship
Several internal examinators
Criteria for exam assessment
See learning outcome
Part time Master and Diploma courses
- Category
- Hours
- Lectures
- 40
- Preparation
- 65,5
- Theory exercises
- 50
- Practical exercises
- 50
- Exam
- 0,5
- English
- 206,0
Kursusinformation
- Language
- English
- Course number
- LBIK10207U
- ECTS
- 7,5 ECTS
- Programme level
- Full Degree Master
- Duration
-
1 block
- Schedulegroup
-
B
- Capacity
- No limitation
- Studyboard
- Study Board for the Biological Area
Contracting department
- Department of Plant and Environmental Sciences
- Department of Food Science
- Department of Media, Cognition and Communication
- Department of Neuroscience and Pharmacology
- Department of Chemistry
Contracting faculty
- Faculty of Science
Course Coordinator
- Sotirios Kampranis (4-84807c7251817d767f3f7c863f757c)
Teacher
Science; Department of Plant and Environmental Sciences:
Sotirios Kampranis, Birger Lindgerg Møller, Thomas
Günther-Pomorski, Irini Pateraki, Karel Miettinen, Simon Dusseaux,
Feiyan Liang, Jon Fugl, Morten Raadam, Yong Zhao
Science; Department of Chemistry: Nikos Hatzakis
Science; Department of Food Science: Poul-Erik Jensen
Humanities; Department of Media, Cognition and Communication: Sune
Holm
Health; Department of Neuroscience and Pharmacology: Søren G.F.
Rasmussen
Are you BA- or KA-student?
Courseinformation of students