Climate, Weather and Plants

Course content

The course comprises the following three general themes: A) Basic principles of the boundary layer physical and climatic elements B) Applied principles and methods within plant science C) Specific applied methods relevant in agricultural, horticultural, forest and landscape relations.

A. Basic: Micro, local and meso climatic elements, Energy balances, Radiation geometry, Atmospheric properties, Wind/heat/humidity transport mechanisms, Boundary layer transport, Shelter effects, Evapotranspiration, Climates of simple non-vegetated and non-uniform surfaces, Global climate, Climate classification, Air pollution and the boundary layer, Climate change and the environmental impact.

B. Applied, general: Climates of vegetated surfaces, Forest climate and hydrology, Intentionally modified climates, Glasshouse climate, Inadvertent climate modification, Urban climate, Crop and local weather, soil-plant-atmosphere modelling, Atmospheric deposition and dispersion in the boundary layer.

C. Applied, specific: Climate stations, Climate and orchards, Climate modification by outdoor growing, Climate management in greenhouses, Climate and forestry, Climate change and tree growing.



MSc Programme in Agriculture

Learning outcome

The objective is that the student be able to estimate the local climate and its dependence on terrain conditions together with both its influence and dependence on the vegetation. The aim is further to provide a fundamental physical knowledge making it possible to work professionally within areas such as climate management and atmospheric environment.

After completing the course the student will be able to:

-Describe the basic climatic components like temperature, humidity, precipitation and wind
-Identify the physical processes in relation to climate and weather e.g. the air-, heat- and water vapour transport mechanisms
-Describe and identify the different surface- and boundary layer characteristics e.g. vegetation, topography and soil condition
-Classify and identify the micro-, local-, meso- and global climatic elements

-Apply the concepts and formulae covered by the course to do simple calculations.
-Analyse the intentionally modified climates such as surface control, frost protection, shelter effects and greenhouse climates
-Apply the basic knowledge to assess inadvertent climate modification such as forest- and urban climate

-Manage more complex plant production and silvicultural problems by combination of basic and applied principles and elements
-Apply climatological principles and methods from more extensive and specific climate/plant related courses within agricultural, horticultural and silvicultural science
-Evaluate and discuss causes and effects in relation to air pollution and climate change

The fundamental topics related to the course content parts A, B and C are covered by lectures, including guest lectures. Small experimental demonstrations in relation to the physical methods and the biological topics are provided. Theoretical excersises 2-4 hours per week(varying). Practical exercises approximately 8 hours in all. A miniproject (duration 1 week) will be included at the end of the course.

See Absalon for final course material. The following is an example of expected course literature.


T.R. Oke: Boundary Layer Climates; Routledge, 2 edition 1988 and lecture notes.

7,5 ECTS
Type of assessment
Written examination, 4 hours under invigilation
All aids allowed

NB: If the exam is held at the ITX, the ITX will provide you a computer. Private computer, tablet or mobile phone CANNOT be brought along to the exam. Books and notes should be brought on paper or saved on a USB key.

Marking scale
7-point grading scale
Censorship form
No external censorship
Several internal examiners
Criteria for exam assessment

see learning outcome

Single subject courses (day)

  • Category
  • Hours
  • Lectures
  • 42
  • Theory exercises
  • 22
  • Practical exercises
  • 8
  • Excursions
  • 8
  • Colloquia
  • 4
  • Preparation
  • 118
  • Exam
  • 4
  • English
  • 206