Matematik F2 (MatF2)

Kursusindhold

Kurset giver et indblik i kompleks funktionsteori og i udvalgte integraltransformationer samt eksempler fra fysikken, hvor disse benyttes. Emner som berøres i kurset er: analytiske funktioner, Cauchy-Riemann betingelserne, Cauchys sætning, Cauchys integralsætning, potensrækker, residueregning, Laplace-transformationen, løsning af simple ordinære og partielle differentialligninger ved hjælp af Fourier- og Laplace-transformationen, Helmholtz-ligningen i sfæriske koordinater og kuglefunktioner.

Engelsk titel

Mathematics F2 (MatF2)

Uddannelse

Bacheloruddannelsen i de fysiske fag

Målbeskrivelse

Færdigheder
Efter at have afsluttet kurset vil de studerende:

  • kunne afgøre om en given kompleks funktion er analytisk
  • kunne benytte konturintegration i den komplekse plan til at udregne visse typer af reelle og komplekse integraler.
  • kunne anvende Laplace-tranformationen og den inverse Laplace-transformation til at løse simple ordinære og partielle differentialligninger med givne initial betingelser, herunder drevne oscillatorer og diffusionsligningen.
  • være fortrolig med laplaceligningen og helmholtzligningen i sfæriske koordinater, samt de sfærisk-harmoniske funktioner som løsning til den vinkelafhængige del.


Viden
I kurset lærer de studerende en række matematiske metoder, som kan anvendes til at løse problemer i fysikken. De studerende vil igennem kurset blive fortrolige med kurveintegraler i den komplekse plan og kunne anvende dem til at løse visse reelle integraler. Yderligere vil de studerende blive fortrolige med Laplace-transformationen og sfærisk harmoniske funktioner.

Kompetencer
Gennem kurset opnår den studerende basale faglige forudsætninger for løsning af simple ordinære og partielle differentialligninger. Disse faglige forudsætninger kan f.eks. bruges i den videre uddannelse indenfor fysikken.

Forelæsninger og regneøvelser

Se Absalon for endelig kursuslitteratur. Nedenstående er et eksempel på forventet undervisningsmateriale.

 

K. F. Riley og H. P. Hobson: Essential Mathematical Methods for the Physical Sciences, 2011 samt noter.

matematik svarende til de første tre blokke af bacheloren i fysik.

ECTS
7,5 ECTS
Prøveform
Skriftlig prøve, 4 timer med opsyn.
---
Hjælpemidler
Kun visse hjælpemidler tilladt

Alle ikke-eletroniske hjælpemidler er tilladt. Elektroniske hjælpemidler, såsom computer, tablet, lommeregner o.lign. er ikke tilladt

Bedømmelsesform
7-trins skala
Censurform
Ingen ekstern censur
Flere interne bedømmere
Kriterier for bedømmelse

Karakteren 12 gives for den fremragende præstation, der demonstrerer udtømmende opfyldelse af kursets målbeskrivelse, med ingen eller få uvæsentlige mangler.

Enkeltfag aften/weekend

  • Kategori
  • Timer
  • Forelæsninger
  • 23
  • Teoretiske øvelser
  • 49
  • Eksamen
  • 4
  • Forberedelse
  • 130
  • Total
  • 206