Kursussøgning, efter- og videreuddannelse – Københavns Universitet

Videresend til en ven Resize Print Bookmark and Share

Kursussøgning, efter- og videreuddannelse

Biophysics of proteins, DNA and membranes (Membran)

Practical information
Study year 2016/2017
Time
Block 2
Programme level Bachelor
ECTS 7,5 ECTS
Course responsible
  • Thomas Rainer Heimburg (7-766a676b6f64774270646b306d7730666d)
  • The Niels Bohr Institute
Course number: NFYB15000U

Course content

This course is the second introductory biophysics course and focuses on the thermodynamics of biological systems. These are in particular biological macromolecules (proteins and nucleic acids), membranes, and the interactions between them. This includes a brief introduction into concepts of thermodynamics and statistical thermodynamics. Topics are (amongst others) protein binding, protein and DNA folding, cooperative transitions (helix coil transitions, denaturation, allosteric reactions), cold denaturation, etc. The second major topic is biological membranes, which are those components of a biological cell that separate the functional units and form the spacial boundaries of the organelles. The major building block is the lipid bilayer into which proteins are embedded. Membranes maintain the chemical potentials of the cell components, and regulate transport. The membrane proteins have many catalytic and transport properties. The membranes themselves display all kinds of interesting physical properties: They can melt and they are characterized by elastic constants, which are important for membrane fusion and structural changes and depend on the melting. Furthermore, membranes may be permeable to certain molecules and they form lateral domains of their components, which are highly discussed in the context of cell signaling. We will introduce into the thermodynamics of membranes, their electrostatics, the hydrophobic effect, elastic theory and lipid-protein interactions.

Learning outcome

In order to pass the course the student should be able to:
Skills

  • Explain the basic concepts of statistical thermodynamics and its application to cooperative transitions, including enzyme activity and allosteric reactions
  • Analyze heat capacity profiles of protein folding and membrane melting
  • Explain structural biology methods such as x-ray diffraction and nuclear magnetic resonance, and the major structural features of proteins, DNA and membranes
  • Describe the phases of membranes, cooperative transitions and the nature of the fluctuations.
  • Derive simple phase diagrams from ideal solution theory or regular solution theory, including the lever rule and Gibbs’ phase rule
  • Explain the origin of the action of anesthetics on membranes
  • Derive the Guy Chapman theory for the electrostatic potential of membranes

Knowledge

  • Understand the basic thermodynamics laws, the role of entropy in defining the states biomolecules, mass action law, van’t Hoff law
  • Understand the role of water in biology, including the Debye-Hückel theory, the hydrophobic effect and the cold unfolding of proteins

Competences
The course builds upon the previous biophysics course, broadening the students’ scope of the subject, and gives a background for following more advanced, specialized courses.

Recommended prerequisites

Corresponding to Biophysics for physicists (NFYB14005U).

Sign up


As an exchange, guest and credit student - click here!

Continuing Education - click here!

Education

BSc Programme in Nanoscience

BSc Programme in Physics

Studyboard

Study Board of Physics, Chemistry and Nanoscience

Course type

Single subject courses (day)

Duration

1 block

Schedulegroup

A
---- SKEMA LINK ----

Teaching and learning methods

Lectures and excersices

Capacity

No restriction to number of participants

Language

English

Literature

Handouts are sufficient. Recommended reading: C.R. Cantor & P.R. Schimmel, Biophysical Chemistry, W.H. Freeman, N.Y., 1980 T. Heimburg, Thermal Biophysics of Membranes, Wiley-VCH, Weinheim 2007

Workload

Category Hours
Lectures 42
Theory exercises 14
Exam 0,5
Preparation 149,5
English 206,0

Exam

Type of assessment

Oral examination, 25 min
No preparation time.

Aid

Without aids

Marking scale

7-point grading scale

Criteria for exam assessment

See "Learning Outcome"

Censorship form

No external censorship
More internal examiners

Re-exam

same as regular exam

Mere information om kurset
Er du BA- eller KA-studerende?
Er du bachelor- eller kandidat-studerende, så find dette kursus i kursusbasen for studerende:

Kursusinformation for indskrevne studerende